Anti-Money Laundering (AML) monitoring in the cryptocurrency sector has evolved from reactive, periodic reviews to proactive, real-time surveillance systems. With crypto-related money laundering reaching $2.1 billion in stolen funds in 2024 alone, implementing robust Live AML monitoring is no longer optionalβit's a survival requirement for crypto platforms.
## The Evolution of Crypto AML
### Traditional AML (2015-2020)
**Characteristics:**
- Periodic batch reviews (daily/weekly)
- Manual transaction analysis
- Limited blockchain coverage (Bitcoin only)
- Reactive approach (after-the-fact detection)
- High false positive rates (40-60%)
- Days-to-weeks investigation cycles
**Limitations:**
- Criminals complete money laundering before detection
- Cross-chain obfuscation not detected
- Limited scalability (manual review bottleneck)
- Poor user experience (delayed withdrawals)
### Modern Live AML (2021-2025)
**Characteristics:**
- Real-time transaction monitoring (<2 seconds)
- AI-powered behavioral analysis
- Multi-chain coverage (all popular blockchains)
- Proactive risk prevention
- Low false positive rates (5-10%)
- Instant automated decisions
**Advantages:**
- Prevention before fund movement
- Complex obfuscation pattern detection
- Unlimited scalability (cloud-native)
- Seamless user experience (instant approvals)
## Live AML Architecture
### System Components
```
βββββββββββββββββββββββββββββββββββββββββββββββ
β Multi-Chain Blockchain Indexers β
β (Real-time transaction monitoring) β
β β’ Bitcoin β’ Ethereum β’ Binance Smart Chain β
β β’ Polygon β’ Avalanche β’ Solana β’ Tron β
β β’ Arbitrum β’ Optimism β’ Base β
ββββββββββββββββββββ¬βββββββββββββββββββββββββββ
β
βΌ
βββββββββββββββββββββββββββββββββββββββββββββββ
β Transaction Classification Engine β
β β’ Deposit Detection β
β β’ Withdrawal Monitoring β
β β’ Internal Transfers β
β β’ Smart Contract Interactions β
ββββββββββββββββββββ¬βββββββββββββββββββββββββββ
β
βΌ
βββββββββββββββββββββββββββββββββββββββββββββββ
β Address Clustering & Labeling β
β β’ Known Exchange Addresses β
β β’ Mixer/Tumbler Services β
β β’ Sanctioned Entities β
β β’ DeFi Protocols β
β β’ Gambling Sites β
ββββββββββββββββββββ¬βββββββββββββββββββββββββββ
β
βΌ
βββββββββββββββββββββββββββββββββββββββββββββββ
β Hop Analysis (2-5 hops) β
β β’ Direct Source/Destination β
β β’ Intermediate Wallets β
β β’ Taint Analysis β
β β’ Fund Flow Mapping β
ββββββββββββββββββββ¬βββββββββββββββββββββββββββ
β
βΌ
βββββββββββββββββββββββββββββββββββββββββββββββ
β Risk Scoring Engine β
β β’ Machine Learning Models β
β β’ Behavioral Pattern Analysis β
β β’ Historical Risk Data β
β β’ Real-time Risk Calculation (0-100) β
ββββββββββββββββββββ¬βββββββββββββββββββββββββββ
β
βΌ
βββββββββββββββββββββββββββββββββββββββββββββββ
β Decision Engine β
β β’ Auto-Approve (Risk 0-30) β
β β’ Manual Review (Risk 31-70) β
β β’ Auto-Reject (Risk 71-100) β
β β’ SAR Filing Trigger (Risk 85+) β
ββββββββββββββββββββ¬βββββββββββββββββββββββββββ
β
βΌ
βββββββββββββββββββββββββββββββββββββββββββββββ
β Compliance & Reporting β
β β’ SAR (Suspicious Activity Reports) β
β β’ Audit Trails β
β β’ Regulatory Reports β
β β’ Analytics Dashboard β
βββββββββββββββββββββββββββββββββββββββββββββββ
```
### Real-Time Processing Pipeline
**Sub-2-Second Analysis:**
```javascript
// Live AML processing flow
async function processTransaction(tx) {
const startTime = Date.now();
// Step 1: Basic validation (50ms)
const validation = await validateTransaction(tx);
// Step 2: Address classification (100ms)
const addressInfo = await classifyAddresses({
source: tx.from,
destination: tx.to
});
// Step 3: Hop analysis (300ms)
const hopAnalysis = await analyzeHops({
address: tx.from,
depth: 3, // Analyze 3 hops back
blockchain: tx.blockchain
});
// Step 4: Sanctions screening (100ms)
const sanctionsCheck = await screenSanctions([
tx.from,
tx.to,
...hopAnalysis.intermediateAddresses
]);
// Step 5: Risk scoring (200ms)
const riskScore = await calculateRiskScore({
transaction: tx,
addressInfo,
hopAnalysis,
sanctionsCheck,
userHistory: await getUserHistory(tx.userId)
});
// Step 6: Decision (50ms)
const decision = await makeDecision(riskScore);
const totalTime = Date.now() - startTime;
console.log(`AML analysis completed in ${totalTime}ms`);
// Typical: 800-1800ms (well under 2 second target)
return {
allowed: decision.approved,
riskScore: riskScore.score,
riskFactors: riskScore.factors,
processingTime: totalTime
};
}
```
## Multi-Chain Coverage
### Supported Blockchains
**Defy Live AML covers all popular blockchains:**
1. **Bitcoin (BTC)**
- UTXO-based analysis
- Transaction graph analysis
- CoinJoin detection
- Taproot address support
2. **Ethereum (ETH)**
- ERC-20 token tracking
- Smart contract interaction analysis
- DeFi protocol integration
- MEV transaction detection
3. **Binance Smart Chain (BSC)**
- BEP-20 token tracking
- PancakeSwap liquidity analysis
- Cross-chain bridge monitoring
4. **Polygon (MATIC)**
- High-throughput transaction monitoring
- DeFi ecosystem coverage
- Bridge transaction analysis
5. **Avalanche (AVAX)**
- C-Chain transaction monitoring
- Subnet support
- Cross-chain bridges
6. **Solana (SOL)**
- SPL token tracking
- High-speed transaction analysis
- Serum DEX monitoring
7. **Tron (TRX)**
- TRC-20 token tracking
- High-volume transaction monitoring
- USDT-TRC20 focus
8. **Arbitrum (ARB)**
- Layer 2 transaction monitoring
- Ethereum mainnet relationship
- DeFi protocol coverage
9. **Optimism (OP)**
- Layer 2 rollup analysis
- Ethereum state synchronization
### Cross-Chain Analysis
**Bridging Detection:**
```javascript
// Detect cross-chain money laundering
async function detectCrossChainObfuscation(tx) {
// Example: ETH β Wrapped Bitcoin β BSC β Mixer
const bridges = [
{ from: 'ethereum', to: 'binance-smart-chain', protocol: 'wormhole' },
{ from: 'ethereum', to: 'polygon', protocol: 'polygon-bridge' },
{ from: 'ethereum', to: 'avalanche', protocol: 'avalanche-bridge' },
{ from: 'bitcoin', to: 'ethereum', protocol: 'wbtc' }
];
// Trace fund flow across chains
const crossChainPath = await traceCrossChain({
startAddress: tx.from,
startChain: tx.blockchain,
maxHops: 5,
includeBridges: bridges
});
// Analyze for obfuscation patterns
const obfuscationScore = calculateObfuscation(crossChainPath);
return {
crossChainDetected: crossChainPath.length > 1,
path: crossChainPath,
obfuscationScore, // 0-100
suspiciousPattern: obfuscationScore > 70
};
}
```
## Mixer and Privacy Protocol Detection
### What are Mixers?
Mixers (tumblers) are services that pool multiple users' cryptocurrency and redistribute them to obscure transaction trails.
**Known Mixers:**
- Tornado Cash (Ethereum) - Sanctioned
- Blender.io (Bitcoin) - Sanctioned
- ChipMixer (Bitcoin) - Shut down
- Sinbad (Bitcoin) - Sanctioned
- Bitcoin Fog (Bitcoin) - Operator arrested
### Detection Techniques
#### 1. Direct Interaction Detection
**1M+ Known Mixer Addresses:**
```javascript
const mixerDatabase = {
'ethereum': [
'0x12345... (Tornado Cash ETH 0.1 pool)',
'0x23456... (Tornado Cash ETH 1 pool)',
'0x34567... (Tornado Cash ETH 10 pool)',
// ... thousands more
],
'bitcoin': [
'1A1zP1... (ChipMixer)',
'3J98t1... (Blender.io)',
// ... thousands more
]
};
async function checkDirectMixerInteraction(address, blockchain) {
const knownMixers = mixerDatabase[blockchain];
// Check if address is a known mixer
if (knownMixers.includes(address)) {
return {
isMixer: true,
mixerName: await getMixerName(address),
riskLevel: 'CRITICAL',
action: 'REJECT'
};
}
// Check transaction history for mixer interactions
const transactions = await getTransactionHistory(address, blockchain);
const mixerInteractions = transactions.filter(tx =>
knownMixers.includes(tx.to) || knownMixers.includes(tx.from)
);
if (mixerInteractions.length > 0) {
return {
isMixer: false,
hasM mixerContact: true,
interactionCount: mixerInteractions.length,
riskLevel: 'HIGH',
action: 'MANUAL_REVIEW'
};
}
return { isMixer: false, hasMixerContact: false };
}
```
#### 2. Behavioral Pattern Analysis
**Mixer-Like Behavior Detection:**
```python
# Machine learning model for mixer detection
import tensorflow as tf
def extract_mixer_features(address):
"""Extract features indicating mixer-like behavior"""
return {
# Transaction patterns
'tx_count_24h': count_transactions(address, hours=24),
'unique_counterparties': count_unique_addresses(address),
'avg_tx_amount': calculate_average_amount(address),
'std_tx_amount': calculate_std_deviation(address),
# Timing patterns
'tx_regularity_score': analyze_timing_regularity(address),
'burst_tx_count': detect_burst_transactions(address),
# Amount patterns
'round_number_ratio': calculate_round_amounts(address),
'peel_chain_detected': detect_peel_chain(address),
# Network topology
'clustering_coefficient': calculate_clustering(address),
'betweenness_centrality': calculate_betweenness(address),
# Privacy protocol usage
'stealth_address_usage': detect_stealth_addresses(address),
'ring_signature_detected': detect_ring_signatures(address)
}
# Train mixer detection model
model = tf.keras.Sequential([
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dropout(0.3),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid')
])
model.compile(
optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy', 'precision', 'recall']
)
# Predict mixer probability
features = extract_mixer_features(suspicious_address)
mixer_probability = model.predict([features])[0][0]
if mixer_probability > 0.85:
flag_as_mixer(suspicious_address)
```
#### 3. Peel Chain Detection
**What is a Peel Chain?**
A peel chain is a money laundering technique where criminals send most funds to a new address while "peeling off" small amounts to cash out.
**Detection:**
```javascript
async function detectPeelChain(address) {
const txHistory = await getTransactionHistory(address, { limit: 100 });
let peelChainScore = 0;
let currentAddress = address;
const chain = [];
for (let i = 0; i < txHistory.length; i++) {
const tx = txHistory[i];
// Check if transaction follows peel pattern:
// 1. Large output (>90%) to new address (change)
// 2. Small output (<10%) to different address (peel)
const outputs = tx.outputs.sort((a, b) => b.amount - a.amount);
if (outputs.length === 2) {
const largeOutput = outputs[0];
const smallOutput = outputs[1];
const ratio = smallOutput.amount / largeOutput.amount;
if (ratio < 0.1 && ratio > 0.01) { // 1-10% peel
peelChainScore++;
chain.push({
txHash: tx.hash,
changeAddress: largeOutput.address,
peelAddress: smallOutput.address,
peelAmount: smallOutput.amount,
peelRatio: ratio
});
// Follow the chain
currentAddress = largeOutput.address;
} else {
break; // Chain broken
}
}
}
return {
isPeelChain: peelChainScore >= 3, // At least 3 consecutive peels
chainLength: peelChainScore,
totalPeeledAmount: chain.reduce((sum, hop) => sum + hop.peelAmount, 0),
chain: chain,
riskScore: Math.min(peelChainScore * 20, 100) // Max 100
};
}
```
## Sanctions List Screening
### Global Sanctions Lists
**Defy Live AML screens against:**
1. **OFAC (US Office of Foreign Assets Control)**
- Specially Designated Nationals (SDN) List
- Sectoral Sanctions Identifications (SSI) List
- Updated daily
2. **EU Sanctions**
- European Union consolidated list
- Updated weekly
3. **UN Sanctions**
- United Nations Security Council list
- Updated as issued
4. **UK Sanctions**
- HM Treasury's list
- Post-Brexit independent list
5. **MASAK (Turkey)**
- Turkish national sanctions list
- Terrorist financing list
6. **FATF High-Risk Jurisdictions**
- "Black list" (call for action)
- "Grey list" (increased monitoring)
### Screening Implementation
```javascript
import { DefyLiveAML } from '@defy/live-aml';
const liveAML = new DefyLiveAML({
apiKey: process.env.DEFY_API_KEY,
sanctionsLists: ['OFAC', 'EU', 'UN', 'UK', 'MASAK'],
updateFrequency: 'realtime' // Updates pushed in real-time
});
async function screenTransaction(tx) {
// Screen all addresses in transaction
const addressesToScreen = [
tx.from,
tx.to,
...tx.intermediateAddresses
];
const screeningResults = await liveAML.screenSanctions({
addresses: addressesToScreen,
blockchain: tx.blockchain,
includeIndirect: true, // Check addresses 2-3 hops away
fuzzyMatching: true // Catch variations and typos
});
if (screeningResults.hit) {
// Sanctions hit detected
await handleSanctionsHit({
transaction: tx,
hitDetails: screeningResults,
action: 'IMMEDIATE_REJECT'
});
// File Suspicious Activity Report
await fileSAR({
type: 'SANCTIONS_VIOLATION',
transaction: tx,
matchedLists: screeningResults.lists,
matchedAddresses: screeningResults.matches
});
return {
allowed: false,
reason: 'SANCTIONS_HIT',
details: `Address ${screeningResults.matchedAddress} appears on ${screeningResults.lists.join(', ')}`
};
}
return { allowed: true, sanctionsScreen: 'PASS' };
}
```
### False Positive Mitigation
**Challenge:**
Crypto address screening has higher false positive rates than traditional name-based screening due to address reuse and clustering.
**Solution:**
```javascript
async function advancedSanctionsScreening(address) {
// Level 1: Direct address match
const directMatch = await checkDirectMatch(address);
if (directMatch.hit && directMatch.confidence > 0.99) {
return { hit: true, confidence: 'HIGH', action: 'REJECT' };
}
// Level 2: Cluster analysis
const cluster = await getAddressCluster(address);
const clusterMatches = await checkClusterSanctions(cluster);
if (clusterMatches.hit && clusterMatches.clusterConfidence > 0.9) {
return { hit: true, confidence: 'MEDIUM', action: 'MANUAL_REVIEW' };
}
// Level 3: Entity resolution
const entity = await resolveEntity(address);
if (entity && entity.sanctioned) {
return { hit: true, confidence: 'HIGH', action: 'REJECT' };
}
// Level 4: Behavioral correlation
const behavior = await analyzeBehavior(address);
if (behavior.matchesSanctionedPattern && behavior.score > 0.85) {
return { hit: true, confidence: 'LOW', action: 'ENHANCED_DUE_DILIGENCE' };
}
return { hit: false };
}
```
## Risk Scoring Model
### Unlimited Behavioral Signals
**Transaction-Level Signals:**
```javascript
const transactionSignals = {
// Amount signals
amount_unusually_high: tx.amount > user.avgTransactionAmount * 10,
amount_just_below_reporting: tx.amount >= 9900 && tx.amount <= 10000,
round_number: tx.amount % 1000 === 0,
// Timing signals
outside_normal_hours: getHour(tx.timestamp) < 6 || getHour(tx.timestamp) > 23,
rapid_succession: timeSinceLastTx(user) < 60, // seconds
burst_activity: countTxLast24h(user) > user.avgDaily * 5,
// Destination signals
new_address: !user.previouslyUsedAddresses.includes(tx.to),
high_risk_jurisdiction: getRiskLevel(tx.toCountry) === 'HIGH',
mixer_destination: isMixer(tx.to),
exchange_to_exchange: isExchange(tx.from) && isExchange(tx.to),
// User behavior signals
first_transaction: user.transactionCount === 1,
sudden_large_deposit: tx.isDeposit && tx.amount > user.totalBalance * 2,
withdrawal_immediately_after_deposit: timeSinceDeposit(user) < 3600,
// Network signals
privacy_coin: tx.currency in ['XMR', 'ZEC', 'DASH'],
tor_usage: tx.userIP && isTorExit(tx.userIP),
vpn_usage: tx.userIP && isVPN(tx.userIP),
// Historical signals
past_suspicious_activity: user.pastSARCount > 0,
chargebacks_history: user.chargebackCount > 2,
multiple_accounts_same_ip: countAccountsWithIP(tx.userIP) > 3
};
```
**Address-Level Signals:**
```javascript
const addressSignals = {
// Categorization
is_exchange: addressCategory === 'exchange',
is_mixer: addressCategory === 'mixer',
is_gambling: addressCategory === 'gambling',
is_darknet_market: addressCategory === 'darknet',
is_ransomware: addressCategory === 'ransomware',
is_scam: addressCategory === 'scam',
// Activity patterns
high_transaction_volume: address.tx24h > 1000,
many_unique_counterparties: address.uniqueCounterparties > 500,
short_lived_address: address.ageInDays < 7,
// Risk indicators
sanctions_proximity: minHopsToSanctionedAddress(address) <= 2,
mixer_proximity: minHopsToMixer(address) <= 3,
stolen_funds_taint: calculateTaint(address, 'stolen') > 0.1,
// Cluster signals
cluster_size: getClusterSize(address),
cluster_has_sanctioned: clusterContainsSanctioned(address),
cluster_activity_pattern: analyzeClusterPattern(address)
};
```
### Machine Learning Risk Model
**Ensemble Approach:**
```python
import xgboost as xgb
from sklearn.ensemble import RandomForestClassifier
import numpy as np
class AMLRiskScorer:
def __init__(self):
# Model 1: XGBoost for transaction patterns
self.xgb_model = xgb.XGBClassifier(
n_estimators=100,
max_depth=6,
learning_rate=0.1
)
# Model 2: Random Forest for address patterns
self.rf_model = RandomForestClassifier(
n_estimators=100,
max_depth=10
)
# Model 3: Neural Network for complex patterns
self.nn_model = build_neural_network()
def calculate_risk_score(self, transaction, address_info, user_history):
# Extract features
tx_features = extract_transaction_features(transaction)
address_features = extract_address_features(address_info)
user_features = extract_user_features(user_history)
# Get predictions from each model
xgb_score = self.xgb_model.predict_proba([tx_features])[0][1]
rf_score = self.rf_model.predict_proba([address_features])[0][1]
nn_score = self.nn_model.predict([user_features])[0][0]
# Ensemble: Weighted average
risk_score = (
xgb_score * 0.4 + # Transaction patterns (40%)
rf_score * 0.35 + # Address patterns (35%)
nn_score * 0.25 # User behavior (25%)
)
# Scale to 0-100
risk_score = risk_score * 100
# Apply rule-based adjustments
if address_info['is_sanctioned']:
risk_score = 100 # Override: Always maximum risk
elif address_info['is_mixer']:
risk_score = max(risk_score, 85) # Minimum 85 for mixer
return {
'score': round(risk_score, 2),
'level': get_risk_level(risk_score),
'factors': get_risk_factors(transaction, address_info, user_history),
'model_scores': {
'transaction_model': round(xgb_score * 100, 2),
'address_model': round(rf_score * 100, 2),
'user_model': round(nn_score * 100, 2)
}
}
def get_risk_level(score):
if score < 30:
return 'LOW'
elif score < 70:
return 'MEDIUM'
else:
return 'HIGH'
```
### Risk Score Interpretation
**Score Ranges:**
- **0-30 (Low Risk - Green):**
- Auto-approve
- Standard monitoring
- No additional due diligence
- **31-70 (Medium Risk - Yellow):**
- Manual review queue
- Additional documentation may be requested
- Enhanced monitoring for next 30 days
- **71-84 (High Risk - Orange):**
- Compliance team review required
- Enhanced due diligence
- Consider rejection or account limitation
- **85-100 (Critical Risk - Red):**
- Auto-reject
- File SAR (Suspicious Activity Report)
- Consider account termination
- Report to authorities if required
## Automated SAR Filing
### When to File SAR
**Regulatory Thresholds:**
**USA (FinCEN):**
- Transactions $5,000+ involving known/suspected money laundering
- Transactions $25,000+ with no reasonable explanation
- File within 30 days of detection
**EU (5AMLD):**
- Any transaction suspected of money laundering or terrorist financing
- No minimum threshold
- File "without delay"
**Turkey (MASAK):**
- Suspicious transactions regardless of amount
- File within 10 business days
### Automated SAR Generation
```javascript
async function automaticSARTrigger(transaction, riskAnalysis) {
const shouldFileSAR = (
riskAnalysis.score >= 85 || // Critical risk
riskAnalysis.factors.includes('SANCTIONS_HIT') || // Sanctions match
riskAnalysis.factors.includes('MIXER_DIRECT') || // Direct mixer use
(transaction.amount >= 5000 && riskAnalysis.score >= 70) // Large + high risk
);
if (shouldFileSAR) {
const sar = await generateSAR({
transaction: transaction,
riskAnalysis: riskAnalysis,
narrative: generateNarrative(transaction, riskAnalysis),
supportingDocuments: await gatherEvidence(transaction)
});
// Queue for compliance team review
await queueSARForReview(sar);
// Notify compliance officer
await notifyComplianceOfficer({
type: 'SAR_GENERATED',
sarId: sar.id,
urgency: riskAnalysis.score >= 95 ? 'CRITICAL' : 'HIGH'
});
return { sarFiled: true, sarId: sar.id };
}
return { sarFiled: false };
}
function generateNarrative(transaction, riskAnalysis) {
const factors = riskAnalysis.factors;
let narrative = `Suspicious transaction detected:\n\n`;
narrative += `Transaction Details:\n`;
narrative += `- Amount: ${transaction.amount} ${transaction.currency}\n`;
narrative += `- Date: ${transaction.timestamp}\n`;
narrative += `- Source: ${transaction.from}\n`;
narrative += `- Destination: ${transaction.to}\n`;
narrative += `- Blockchain: ${transaction.blockchain}\n\n`;
narrative += `Risk Factors:\n`;
factors.forEach((factor, index) => {
narrative += `${index + 1}. ${formatFactor(factor)}\n`;
});
narrative += `\nRisk Score: ${riskAnalysis.score}/100\n`;
narrative += `Risk Level: ${riskAnalysis.level}\n`;
return narrative;
}
```
## Defy Live AML Performance
### Real-World Metrics
**Speed:**
- Average analysis time: <2 seconds
- 99.99% uptime SLA
- 1M+ transactions processed daily
**Accuracy:**
- False positive rate: 8% (industry average: 40-60%)
- Detection rate: 96% (missed only 4% of known suspicious activity)
- Sanctions screening accuracy: 99.7%
**Coverage:**
- all popular blockchains supported
- 1M+ known risky addresses
- unlimited signals
- 220 countries covered
**Cost Savings:**
- 60% reduction in manual review costs
- 87% faster investigation cycles
- 95% reduction in false positives
### Customer Success Story
**Turkish Crypto Exchange - Case Study:**
**Before Defy Live AML:**
- Manual AML reviews: 2-3 days
- False positive rate: 45%
- 3 full-time compliance analysts
- 1 missed SAR (regulatory warning)
- User complaints: High (delayed withdrawals)
**After Defy Live AML:**
- Automated AML: <2 seconds
- False positive rate: 7%
- 1 compliance analyst (75% reduction)
- 0 missed SARs (18 months)
- User satisfaction: 94% (instant withdrawals)
**ROI:**
- Implementation cost: $15,000
- Monthly subscription: $3,000
- Annual savings: $180,000 (labor) + $50,000 (avoided penalties)
- Net ROI Year 1: 540%
## Implementation Guide
### Integration Steps
**Week 1: Setup & Configuration**
```javascript
// Step 1: Install SDK
npm install @defy/live-aml
// Step 2: Initialize
import { DefyLiveAML } from '@defy/live-aml';
const liveAML = new DefyLiveAML({
apiKey: process.env.DEFY_API_KEY,
environment: 'production',
blockchains: ['bitcoin', 'ethereum', 'binance-smart-chain'],
riskThresholds: {
autoApprove: 30,
manualReview: 70,
autoReject: 85
},
sanctionsLists: ['OFAC', 'EU', 'UN', 'MASAK'],
webhookUrl: 'https://your-exchange.com/webhooks/aml'
});
// Step 3: Configure rules
await liveAML.configureRules({
mixer_detection: 'strict',
hop_analysis_depth: 3,
sanctions_screening: 'comprehensive',
behavioral_analysis: 'enabled',
auto_sar_filing: 'enabled'
});
```
**Week 2-3: Transaction Monitoring Integration**
```javascript
// Integrate with your transaction flow
app.post('/api/withdraw', async (req, res) => {
const { userId, amount, currency, toAddress, blockchain } = req.body;
// Run Live AML analysis
const amlResult = await liveAML.analyzeTransaction({
userId: userId,
transaction: {
type: 'withdrawal',
amount: amount,
currency: currency,
from: await getUserDepositAddress(userId, blockchain),
to: toAddress,
blockchain: blockchain
},
userProfile: await getUserVerificationInfo(userId)
});
// Handle result
if (amlResult.approved) {
// Green light: Process withdrawal
const txHash = await processWithdrawal(req.body);
res.json({ success: true, txHash, riskScore: amlResult.riskScore });
} else if (amlResult.requiresReview) {
// Yellow: Queue for manual review
const reviewId = await queueManualReview({
userId,
transaction: req.body,
amlAnalysis: amlResult
});
res.json({ success: false, reason: 'PENDING_REVIEW', reviewId });
} else {
// Red: Reject
await logRejectedTransaction({
userId,
transaction: req.body,
amlAnalysis: amlResult
});
res.status(400).json({
success: false,
reason: 'AML_RISK_TOO_HIGH',
riskScore: amlResult.riskScore
});
}
});
// Webhook handler for async updates
app.post('/webhooks/aml', async (req, res) => {
const event = req.body;
switch (event.type) {
case 'high_risk_detected':
await notifyComplianceTeam(event);
break;
case 'sanctions_hit':
await handleSanctionsAlert(event);
break;
case 'sar_filed':
await updateTransactionStatus(event.transactionId, 'SAR_FILED');
break;
}
res.sendStatus(200);
});
```
**Week 4: Testing & Validation**
```javascript
// Test with known scenarios
const testCases = [
{
name: 'Low risk legitimate transaction',
toAddress: '0x1234... (verified exchange)',
amount: 500,
expectedRisk: 'LOW',
expectedAction: 'APPROVE'
},
{
name: 'Mixer destination',
toAddress: '0xTORNADO... (known mixer)',
amount: 1000,
expectedRisk: 'CRITICAL',
expectedAction: 'REJECT'
},
{
name: 'Sanctioned address',
toAddress: '0xSANCTIONED... (OFAC list)',
amount: 100,
expectedRisk: 'CRITICAL',
expectedAction: 'REJECT'
}
];
for (const testCase of testCases) {
const result = await liveAML.analyzeTransaction(testCase);
assert(result.riskLevel === testCase.expectedRisk);
assert(result.action === testCase.expectedAction);
console.log(`β Test passed: ${testCase.name}`);
}
```
## Conclusion: Real-Time AML is Essential
In the fast-paced world of cryptocurrency, traditional batch-processing AML systems are insufficient. Criminals move funds in minutes, exploit cross-chain bridges, and use sophisticated obfuscation techniques.
**Defy Live AML provides:**
- **Real-time protection** (<2 seconds)
- **Multi-chain coverage** (all popular blockchains)
- **High accuracy** (96% detection, 8% false positives)
- **Automated compliance** (SAR generation, regulatory reporting)
- **Cost savings** (60% reduction in manual review)
- **Better user experience** (instant approvals for legitimate users)
### Get Started
**Pricing:**
- Setup fee: $5,000 (one-time)
- Monthly: $2,000 (up to 50,000 transactions)
- Enterprise: Custom pricing (unlimited transactions)
**Implementation:**
- Week 1: Setup and configuration
- Week 2-3: Integration and testing
- Week 4: Production deployment
- Ongoing: Monitoring and optimization
**Contact:**
- Email: info@getdefy.co
- Demo: https://getdefy.co/live-aml-demo
- Documentation: https://docs.getdefy.co/live-aml
Protect your platform, satisfy regulators, and provide seamless user experience with Defy Live AML.