Defy
Blockchain

Real-Time AML Monitoring for Multi-Chain Crypto Platforms

Admin
October 13, 2025
11 min
#AML#Live Monitoring#Blockchain#Risk Scoring#Sanctions
Anti-Money Laundering (AML) monitoring in the cryptocurrency sector has evolved from reactive, periodic reviews to proactive, real-time surveillance systems. With crypto-related money laundering reaching $2.1 billion in stolen funds in 2024 alone, implementing robust Live AML monitoring is no longer optionalβ€”it's a survival requirement for crypto platforms. ## The Evolution of Crypto AML ### Traditional AML (2015-2020) **Characteristics:** - Periodic batch reviews (daily/weekly) - Manual transaction analysis - Limited blockchain coverage (Bitcoin only) - Reactive approach (after-the-fact detection) - High false positive rates (40-60%) - Days-to-weeks investigation cycles **Limitations:** - Criminals complete money laundering before detection - Cross-chain obfuscation not detected - Limited scalability (manual review bottleneck) - Poor user experience (delayed withdrawals) ### Modern Live AML (2021-2025) **Characteristics:** - Real-time transaction monitoring (<2 seconds) - AI-powered behavioral analysis - Multi-chain coverage (all popular blockchains) - Proactive risk prevention - Low false positive rates (5-10%) - Instant automated decisions **Advantages:** - Prevention before fund movement - Complex obfuscation pattern detection - Unlimited scalability (cloud-native) - Seamless user experience (instant approvals) ## Live AML Architecture ### System Components ``` β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Multi-Chain Blockchain Indexers β”‚ β”‚ (Real-time transaction monitoring) β”‚ β”‚ β€’ Bitcoin β€’ Ethereum β€’ Binance Smart Chain β”‚ β”‚ β€’ Polygon β€’ Avalanche β€’ Solana β€’ Tron β”‚ β”‚ β€’ Arbitrum β€’ Optimism β€’ Base β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Transaction Classification Engine β”‚ β”‚ β€’ Deposit Detection β”‚ β”‚ β€’ Withdrawal Monitoring β”‚ β”‚ β€’ Internal Transfers β”‚ β”‚ β€’ Smart Contract Interactions β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Address Clustering & Labeling β”‚ β”‚ β€’ Known Exchange Addresses β”‚ β”‚ β€’ Mixer/Tumbler Services β”‚ β”‚ β€’ Sanctioned Entities β”‚ β”‚ β€’ DeFi Protocols β”‚ β”‚ β€’ Gambling Sites β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Hop Analysis (2-5 hops) β”‚ β”‚ β€’ Direct Source/Destination β”‚ β”‚ β€’ Intermediate Wallets β”‚ β”‚ β€’ Taint Analysis β”‚ β”‚ β€’ Fund Flow Mapping β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Risk Scoring Engine β”‚ β”‚ β€’ Machine Learning Models β”‚ β”‚ β€’ Behavioral Pattern Analysis β”‚ β”‚ β€’ Historical Risk Data β”‚ β”‚ β€’ Real-time Risk Calculation (0-100) β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Decision Engine β”‚ β”‚ β€’ Auto-Approve (Risk 0-30) β”‚ β”‚ β€’ Manual Review (Risk 31-70) β”‚ β”‚ β€’ Auto-Reject (Risk 71-100) β”‚ β”‚ β€’ SAR Filing Trigger (Risk 85+) β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Compliance & Reporting β”‚ β”‚ β€’ SAR (Suspicious Activity Reports) β”‚ β”‚ β€’ Audit Trails β”‚ β”‚ β€’ Regulatory Reports β”‚ β”‚ β€’ Analytics Dashboard β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` ### Real-Time Processing Pipeline **Sub-2-Second Analysis:** ```javascript // Live AML processing flow async function processTransaction(tx) { const startTime = Date.now(); // Step 1: Basic validation (50ms) const validation = await validateTransaction(tx); // Step 2: Address classification (100ms) const addressInfo = await classifyAddresses({ source: tx.from, destination: tx.to }); // Step 3: Hop analysis (300ms) const hopAnalysis = await analyzeHops({ address: tx.from, depth: 3, // Analyze 3 hops back blockchain: tx.blockchain }); // Step 4: Sanctions screening (100ms) const sanctionsCheck = await screenSanctions([ tx.from, tx.to, ...hopAnalysis.intermediateAddresses ]); // Step 5: Risk scoring (200ms) const riskScore = await calculateRiskScore({ transaction: tx, addressInfo, hopAnalysis, sanctionsCheck, userHistory: await getUserHistory(tx.userId) }); // Step 6: Decision (50ms) const decision = await makeDecision(riskScore); const totalTime = Date.now() - startTime; console.log(`AML analysis completed in ${totalTime}ms`); // Typical: 800-1800ms (well under 2 second target) return { allowed: decision.approved, riskScore: riskScore.score, riskFactors: riskScore.factors, processingTime: totalTime }; } ``` ## Multi-Chain Coverage ### Supported Blockchains **Defy Live AML covers all popular blockchains:** 1. **Bitcoin (BTC)** - UTXO-based analysis - Transaction graph analysis - CoinJoin detection - Taproot address support 2. **Ethereum (ETH)** - ERC-20 token tracking - Smart contract interaction analysis - DeFi protocol integration - MEV transaction detection 3. **Binance Smart Chain (BSC)** - BEP-20 token tracking - PancakeSwap liquidity analysis - Cross-chain bridge monitoring 4. **Polygon (MATIC)** - High-throughput transaction monitoring - DeFi ecosystem coverage - Bridge transaction analysis 5. **Avalanche (AVAX)** - C-Chain transaction monitoring - Subnet support - Cross-chain bridges 6. **Solana (SOL)** - SPL token tracking - High-speed transaction analysis - Serum DEX monitoring 7. **Tron (TRX)** - TRC-20 token tracking - High-volume transaction monitoring - USDT-TRC20 focus 8. **Arbitrum (ARB)** - Layer 2 transaction monitoring - Ethereum mainnet relationship - DeFi protocol coverage 9. **Optimism (OP)** - Layer 2 rollup analysis - Ethereum state synchronization ### Cross-Chain Analysis **Bridging Detection:** ```javascript // Detect cross-chain money laundering async function detectCrossChainObfuscation(tx) { // Example: ETH β†’ Wrapped Bitcoin β†’ BSC β†’ Mixer const bridges = [ { from: 'ethereum', to: 'binance-smart-chain', protocol: 'wormhole' }, { from: 'ethereum', to: 'polygon', protocol: 'polygon-bridge' }, { from: 'ethereum', to: 'avalanche', protocol: 'avalanche-bridge' }, { from: 'bitcoin', to: 'ethereum', protocol: 'wbtc' } ]; // Trace fund flow across chains const crossChainPath = await traceCrossChain({ startAddress: tx.from, startChain: tx.blockchain, maxHops: 5, includeBridges: bridges }); // Analyze for obfuscation patterns const obfuscationScore = calculateObfuscation(crossChainPath); return { crossChainDetected: crossChainPath.length > 1, path: crossChainPath, obfuscationScore, // 0-100 suspiciousPattern: obfuscationScore > 70 }; } ``` ## Mixer and Privacy Protocol Detection ### What are Mixers? Mixers (tumblers) are services that pool multiple users' cryptocurrency and redistribute them to obscure transaction trails. **Known Mixers:** - Tornado Cash (Ethereum) - Sanctioned - Blender.io (Bitcoin) - Sanctioned - ChipMixer (Bitcoin) - Shut down - Sinbad (Bitcoin) - Sanctioned - Bitcoin Fog (Bitcoin) - Operator arrested ### Detection Techniques #### 1. Direct Interaction Detection **1M+ Known Mixer Addresses:** ```javascript const mixerDatabase = { 'ethereum': [ '0x12345... (Tornado Cash ETH 0.1 pool)', '0x23456... (Tornado Cash ETH 1 pool)', '0x34567... (Tornado Cash ETH 10 pool)', // ... thousands more ], 'bitcoin': [ '1A1zP1... (ChipMixer)', '3J98t1... (Blender.io)', // ... thousands more ] }; async function checkDirectMixerInteraction(address, blockchain) { const knownMixers = mixerDatabase[blockchain]; // Check if address is a known mixer if (knownMixers.includes(address)) { return { isMixer: true, mixerName: await getMixerName(address), riskLevel: 'CRITICAL', action: 'REJECT' }; } // Check transaction history for mixer interactions const transactions = await getTransactionHistory(address, blockchain); const mixerInteractions = transactions.filter(tx => knownMixers.includes(tx.to) || knownMixers.includes(tx.from) ); if (mixerInteractions.length > 0) { return { isMixer: false, hasM mixerContact: true, interactionCount: mixerInteractions.length, riskLevel: 'HIGH', action: 'MANUAL_REVIEW' }; } return { isMixer: false, hasMixerContact: false }; } ``` #### 2. Behavioral Pattern Analysis **Mixer-Like Behavior Detection:** ```python # Machine learning model for mixer detection import tensorflow as tf def extract_mixer_features(address): """Extract features indicating mixer-like behavior""" return { # Transaction patterns 'tx_count_24h': count_transactions(address, hours=24), 'unique_counterparties': count_unique_addresses(address), 'avg_tx_amount': calculate_average_amount(address), 'std_tx_amount': calculate_std_deviation(address), # Timing patterns 'tx_regularity_score': analyze_timing_regularity(address), 'burst_tx_count': detect_burst_transactions(address), # Amount patterns 'round_number_ratio': calculate_round_amounts(address), 'peel_chain_detected': detect_peel_chain(address), # Network topology 'clustering_coefficient': calculate_clustering(address), 'betweenness_centrality': calculate_betweenness(address), # Privacy protocol usage 'stealth_address_usage': detect_stealth_addresses(address), 'ring_signature_detected': detect_ring_signatures(address) } # Train mixer detection model model = tf.keras.Sequential([ tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dropout(0.3), tf.keras.layers.Dense(32, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) model.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy', 'precision', 'recall'] ) # Predict mixer probability features = extract_mixer_features(suspicious_address) mixer_probability = model.predict([features])[0][0] if mixer_probability > 0.85: flag_as_mixer(suspicious_address) ``` #### 3. Peel Chain Detection **What is a Peel Chain?** A peel chain is a money laundering technique where criminals send most funds to a new address while "peeling off" small amounts to cash out. **Detection:** ```javascript async function detectPeelChain(address) { const txHistory = await getTransactionHistory(address, { limit: 100 }); let peelChainScore = 0; let currentAddress = address; const chain = []; for (let i = 0; i < txHistory.length; i++) { const tx = txHistory[i]; // Check if transaction follows peel pattern: // 1. Large output (>90%) to new address (change) // 2. Small output (<10%) to different address (peel) const outputs = tx.outputs.sort((a, b) => b.amount - a.amount); if (outputs.length === 2) { const largeOutput = outputs[0]; const smallOutput = outputs[1]; const ratio = smallOutput.amount / largeOutput.amount; if (ratio < 0.1 && ratio > 0.01) { // 1-10% peel peelChainScore++; chain.push({ txHash: tx.hash, changeAddress: largeOutput.address, peelAddress: smallOutput.address, peelAmount: smallOutput.amount, peelRatio: ratio }); // Follow the chain currentAddress = largeOutput.address; } else { break; // Chain broken } } } return { isPeelChain: peelChainScore >= 3, // At least 3 consecutive peels chainLength: peelChainScore, totalPeeledAmount: chain.reduce((sum, hop) => sum + hop.peelAmount, 0), chain: chain, riskScore: Math.min(peelChainScore * 20, 100) // Max 100 }; } ``` ## Sanctions List Screening ### Global Sanctions Lists **Defy Live AML screens against:** 1. **OFAC (US Office of Foreign Assets Control)** - Specially Designated Nationals (SDN) List - Sectoral Sanctions Identifications (SSI) List - Updated daily 2. **EU Sanctions** - European Union consolidated list - Updated weekly 3. **UN Sanctions** - United Nations Security Council list - Updated as issued 4. **UK Sanctions** - HM Treasury's list - Post-Brexit independent list 5. **MASAK (Turkey)** - Turkish national sanctions list - Terrorist financing list 6. **FATF High-Risk Jurisdictions** - "Black list" (call for action) - "Grey list" (increased monitoring) ### Screening Implementation ```javascript import { DefyLiveAML } from '@defy/live-aml'; const liveAML = new DefyLiveAML({ apiKey: process.env.DEFY_API_KEY, sanctionsLists: ['OFAC', 'EU', 'UN', 'UK', 'MASAK'], updateFrequency: 'realtime' // Updates pushed in real-time }); async function screenTransaction(tx) { // Screen all addresses in transaction const addressesToScreen = [ tx.from, tx.to, ...tx.intermediateAddresses ]; const screeningResults = await liveAML.screenSanctions({ addresses: addressesToScreen, blockchain: tx.blockchain, includeIndirect: true, // Check addresses 2-3 hops away fuzzyMatching: true // Catch variations and typos }); if (screeningResults.hit) { // Sanctions hit detected await handleSanctionsHit({ transaction: tx, hitDetails: screeningResults, action: 'IMMEDIATE_REJECT' }); // File Suspicious Activity Report await fileSAR({ type: 'SANCTIONS_VIOLATION', transaction: tx, matchedLists: screeningResults.lists, matchedAddresses: screeningResults.matches }); return { allowed: false, reason: 'SANCTIONS_HIT', details: `Address ${screeningResults.matchedAddress} appears on ${screeningResults.lists.join(', ')}` }; } return { allowed: true, sanctionsScreen: 'PASS' }; } ``` ### False Positive Mitigation **Challenge:** Crypto address screening has higher false positive rates than traditional name-based screening due to address reuse and clustering. **Solution:** ```javascript async function advancedSanctionsScreening(address) { // Level 1: Direct address match const directMatch = await checkDirectMatch(address); if (directMatch.hit && directMatch.confidence > 0.99) { return { hit: true, confidence: 'HIGH', action: 'REJECT' }; } // Level 2: Cluster analysis const cluster = await getAddressCluster(address); const clusterMatches = await checkClusterSanctions(cluster); if (clusterMatches.hit && clusterMatches.clusterConfidence > 0.9) { return { hit: true, confidence: 'MEDIUM', action: 'MANUAL_REVIEW' }; } // Level 3: Entity resolution const entity = await resolveEntity(address); if (entity && entity.sanctioned) { return { hit: true, confidence: 'HIGH', action: 'REJECT' }; } // Level 4: Behavioral correlation const behavior = await analyzeBehavior(address); if (behavior.matchesSanctionedPattern && behavior.score > 0.85) { return { hit: true, confidence: 'LOW', action: 'ENHANCED_DUE_DILIGENCE' }; } return { hit: false }; } ``` ## Risk Scoring Model ### Unlimited Behavioral Signals **Transaction-Level Signals:** ```javascript const transactionSignals = { // Amount signals amount_unusually_high: tx.amount > user.avgTransactionAmount * 10, amount_just_below_reporting: tx.amount >= 9900 && tx.amount <= 10000, round_number: tx.amount % 1000 === 0, // Timing signals outside_normal_hours: getHour(tx.timestamp) < 6 || getHour(tx.timestamp) > 23, rapid_succession: timeSinceLastTx(user) < 60, // seconds burst_activity: countTxLast24h(user) > user.avgDaily * 5, // Destination signals new_address: !user.previouslyUsedAddresses.includes(tx.to), high_risk_jurisdiction: getRiskLevel(tx.toCountry) === 'HIGH', mixer_destination: isMixer(tx.to), exchange_to_exchange: isExchange(tx.from) && isExchange(tx.to), // User behavior signals first_transaction: user.transactionCount === 1, sudden_large_deposit: tx.isDeposit && tx.amount > user.totalBalance * 2, withdrawal_immediately_after_deposit: timeSinceDeposit(user) < 3600, // Network signals privacy_coin: tx.currency in ['XMR', 'ZEC', 'DASH'], tor_usage: tx.userIP && isTorExit(tx.userIP), vpn_usage: tx.userIP && isVPN(tx.userIP), // Historical signals past_suspicious_activity: user.pastSARCount > 0, chargebacks_history: user.chargebackCount > 2, multiple_accounts_same_ip: countAccountsWithIP(tx.userIP) > 3 }; ``` **Address-Level Signals:** ```javascript const addressSignals = { // Categorization is_exchange: addressCategory === 'exchange', is_mixer: addressCategory === 'mixer', is_gambling: addressCategory === 'gambling', is_darknet_market: addressCategory === 'darknet', is_ransomware: addressCategory === 'ransomware', is_scam: addressCategory === 'scam', // Activity patterns high_transaction_volume: address.tx24h > 1000, many_unique_counterparties: address.uniqueCounterparties > 500, short_lived_address: address.ageInDays < 7, // Risk indicators sanctions_proximity: minHopsToSanctionedAddress(address) <= 2, mixer_proximity: minHopsToMixer(address) <= 3, stolen_funds_taint: calculateTaint(address, 'stolen') > 0.1, // Cluster signals cluster_size: getClusterSize(address), cluster_has_sanctioned: clusterContainsSanctioned(address), cluster_activity_pattern: analyzeClusterPattern(address) }; ``` ### Machine Learning Risk Model **Ensemble Approach:** ```python import xgboost as xgb from sklearn.ensemble import RandomForestClassifier import numpy as np class AMLRiskScorer: def __init__(self): # Model 1: XGBoost for transaction patterns self.xgb_model = xgb.XGBClassifier( n_estimators=100, max_depth=6, learning_rate=0.1 ) # Model 2: Random Forest for address patterns self.rf_model = RandomForestClassifier( n_estimators=100, max_depth=10 ) # Model 3: Neural Network for complex patterns self.nn_model = build_neural_network() def calculate_risk_score(self, transaction, address_info, user_history): # Extract features tx_features = extract_transaction_features(transaction) address_features = extract_address_features(address_info) user_features = extract_user_features(user_history) # Get predictions from each model xgb_score = self.xgb_model.predict_proba([tx_features])[0][1] rf_score = self.rf_model.predict_proba([address_features])[0][1] nn_score = self.nn_model.predict([user_features])[0][0] # Ensemble: Weighted average risk_score = ( xgb_score * 0.4 + # Transaction patterns (40%) rf_score * 0.35 + # Address patterns (35%) nn_score * 0.25 # User behavior (25%) ) # Scale to 0-100 risk_score = risk_score * 100 # Apply rule-based adjustments if address_info['is_sanctioned']: risk_score = 100 # Override: Always maximum risk elif address_info['is_mixer']: risk_score = max(risk_score, 85) # Minimum 85 for mixer return { 'score': round(risk_score, 2), 'level': get_risk_level(risk_score), 'factors': get_risk_factors(transaction, address_info, user_history), 'model_scores': { 'transaction_model': round(xgb_score * 100, 2), 'address_model': round(rf_score * 100, 2), 'user_model': round(nn_score * 100, 2) } } def get_risk_level(score): if score < 30: return 'LOW' elif score < 70: return 'MEDIUM' else: return 'HIGH' ``` ### Risk Score Interpretation **Score Ranges:** - **0-30 (Low Risk - Green):** - Auto-approve - Standard monitoring - No additional due diligence - **31-70 (Medium Risk - Yellow):** - Manual review queue - Additional documentation may be requested - Enhanced monitoring for next 30 days - **71-84 (High Risk - Orange):** - Compliance team review required - Enhanced due diligence - Consider rejection or account limitation - **85-100 (Critical Risk - Red):** - Auto-reject - File SAR (Suspicious Activity Report) - Consider account termination - Report to authorities if required ## Automated SAR Filing ### When to File SAR **Regulatory Thresholds:** **USA (FinCEN):** - Transactions $5,000+ involving known/suspected money laundering - Transactions $25,000+ with no reasonable explanation - File within 30 days of detection **EU (5AMLD):** - Any transaction suspected of money laundering or terrorist financing - No minimum threshold - File "without delay" **Turkey (MASAK):** - Suspicious transactions regardless of amount - File within 10 business days ### Automated SAR Generation ```javascript async function automaticSARTrigger(transaction, riskAnalysis) { const shouldFileSAR = ( riskAnalysis.score >= 85 || // Critical risk riskAnalysis.factors.includes('SANCTIONS_HIT') || // Sanctions match riskAnalysis.factors.includes('MIXER_DIRECT') || // Direct mixer use (transaction.amount >= 5000 && riskAnalysis.score >= 70) // Large + high risk ); if (shouldFileSAR) { const sar = await generateSAR({ transaction: transaction, riskAnalysis: riskAnalysis, narrative: generateNarrative(transaction, riskAnalysis), supportingDocuments: await gatherEvidence(transaction) }); // Queue for compliance team review await queueSARForReview(sar); // Notify compliance officer await notifyComplianceOfficer({ type: 'SAR_GENERATED', sarId: sar.id, urgency: riskAnalysis.score >= 95 ? 'CRITICAL' : 'HIGH' }); return { sarFiled: true, sarId: sar.id }; } return { sarFiled: false }; } function generateNarrative(transaction, riskAnalysis) { const factors = riskAnalysis.factors; let narrative = `Suspicious transaction detected:\n\n`; narrative += `Transaction Details:\n`; narrative += `- Amount: ${transaction.amount} ${transaction.currency}\n`; narrative += `- Date: ${transaction.timestamp}\n`; narrative += `- Source: ${transaction.from}\n`; narrative += `- Destination: ${transaction.to}\n`; narrative += `- Blockchain: ${transaction.blockchain}\n\n`; narrative += `Risk Factors:\n`; factors.forEach((factor, index) => { narrative += `${index + 1}. ${formatFactor(factor)}\n`; }); narrative += `\nRisk Score: ${riskAnalysis.score}/100\n`; narrative += `Risk Level: ${riskAnalysis.level}\n`; return narrative; } ``` ## Defy Live AML Performance ### Real-World Metrics **Speed:** - Average analysis time: <2 seconds - 99.99% uptime SLA - 1M+ transactions processed daily **Accuracy:** - False positive rate: 8% (industry average: 40-60%) - Detection rate: 96% (missed only 4% of known suspicious activity) - Sanctions screening accuracy: 99.7% **Coverage:** - all popular blockchains supported - 1M+ known risky addresses - unlimited signals - 220 countries covered **Cost Savings:** - 60% reduction in manual review costs - 87% faster investigation cycles - 95% reduction in false positives ### Customer Success Story **Turkish Crypto Exchange - Case Study:** **Before Defy Live AML:** - Manual AML reviews: 2-3 days - False positive rate: 45% - 3 full-time compliance analysts - 1 missed SAR (regulatory warning) - User complaints: High (delayed withdrawals) **After Defy Live AML:** - Automated AML: <2 seconds - False positive rate: 7% - 1 compliance analyst (75% reduction) - 0 missed SARs (18 months) - User satisfaction: 94% (instant withdrawals) **ROI:** - Implementation cost: $15,000 - Monthly subscription: $3,000 - Annual savings: $180,000 (labor) + $50,000 (avoided penalties) - Net ROI Year 1: 540% ## Implementation Guide ### Integration Steps **Week 1: Setup & Configuration** ```javascript // Step 1: Install SDK npm install @defy/live-aml // Step 2: Initialize import { DefyLiveAML } from '@defy/live-aml'; const liveAML = new DefyLiveAML({ apiKey: process.env.DEFY_API_KEY, environment: 'production', blockchains: ['bitcoin', 'ethereum', 'binance-smart-chain'], riskThresholds: { autoApprove: 30, manualReview: 70, autoReject: 85 }, sanctionsLists: ['OFAC', 'EU', 'UN', 'MASAK'], webhookUrl: 'https://your-exchange.com/webhooks/aml' }); // Step 3: Configure rules await liveAML.configureRules({ mixer_detection: 'strict', hop_analysis_depth: 3, sanctions_screening: 'comprehensive', behavioral_analysis: 'enabled', auto_sar_filing: 'enabled' }); ``` **Week 2-3: Transaction Monitoring Integration** ```javascript // Integrate with your transaction flow app.post('/api/withdraw', async (req, res) => { const { userId, amount, currency, toAddress, blockchain } = req.body; // Run Live AML analysis const amlResult = await liveAML.analyzeTransaction({ userId: userId, transaction: { type: 'withdrawal', amount: amount, currency: currency, from: await getUserDepositAddress(userId, blockchain), to: toAddress, blockchain: blockchain }, userProfile: await getUserVerificationInfo(userId) }); // Handle result if (amlResult.approved) { // Green light: Process withdrawal const txHash = await processWithdrawal(req.body); res.json({ success: true, txHash, riskScore: amlResult.riskScore }); } else if (amlResult.requiresReview) { // Yellow: Queue for manual review const reviewId = await queueManualReview({ userId, transaction: req.body, amlAnalysis: amlResult }); res.json({ success: false, reason: 'PENDING_REVIEW', reviewId }); } else { // Red: Reject await logRejectedTransaction({ userId, transaction: req.body, amlAnalysis: amlResult }); res.status(400).json({ success: false, reason: 'AML_RISK_TOO_HIGH', riskScore: amlResult.riskScore }); } }); // Webhook handler for async updates app.post('/webhooks/aml', async (req, res) => { const event = req.body; switch (event.type) { case 'high_risk_detected': await notifyComplianceTeam(event); break; case 'sanctions_hit': await handleSanctionsAlert(event); break; case 'sar_filed': await updateTransactionStatus(event.transactionId, 'SAR_FILED'); break; } res.sendStatus(200); }); ``` **Week 4: Testing & Validation** ```javascript // Test with known scenarios const testCases = [ { name: 'Low risk legitimate transaction', toAddress: '0x1234... (verified exchange)', amount: 500, expectedRisk: 'LOW', expectedAction: 'APPROVE' }, { name: 'Mixer destination', toAddress: '0xTORNADO... (known mixer)', amount: 1000, expectedRisk: 'CRITICAL', expectedAction: 'REJECT' }, { name: 'Sanctioned address', toAddress: '0xSANCTIONED... (OFAC list)', amount: 100, expectedRisk: 'CRITICAL', expectedAction: 'REJECT' } ]; for (const testCase of testCases) { const result = await liveAML.analyzeTransaction(testCase); assert(result.riskLevel === testCase.expectedRisk); assert(result.action === testCase.expectedAction); console.log(`βœ“ Test passed: ${testCase.name}`); } ``` ## Conclusion: Real-Time AML is Essential In the fast-paced world of cryptocurrency, traditional batch-processing AML systems are insufficient. Criminals move funds in minutes, exploit cross-chain bridges, and use sophisticated obfuscation techniques. **Defy Live AML provides:** - **Real-time protection** (<2 seconds) - **Multi-chain coverage** (all popular blockchains) - **High accuracy** (96% detection, 8% false positives) - **Automated compliance** (SAR generation, regulatory reporting) - **Cost savings** (60% reduction in manual review) - **Better user experience** (instant approvals for legitimate users) ### Get Started **Pricing:** - Setup fee: $5,000 (one-time) - Monthly: $2,000 (up to 50,000 transactions) - Enterprise: Custom pricing (unlimited transactions) **Implementation:** - Week 1: Setup and configuration - Week 2-3: Integration and testing - Week 4: Production deployment - Ongoing: Monitoring and optimization **Contact:** - Email: info@getdefy.co - Demo: https://getdefy.co/live-aml-demo - Documentation: https://docs.getdefy.co/live-aml Protect your platform, satisfy regulators, and provide seamless user experience with Defy Live AML.

More with Defy

Contact us to learn more about our compliance and security solutions.

Contact Us

Share This Article

Help this article reach more people by sharing it on social media.

Stay Updated on Compliance and AI Trends

Subscribe to our weekly newsletter and never miss the latest industry developments